OVERLAND FLOW CHART

Worksheet 2: Runoff curve number and runoff

Project			By		_ Date		-	
Location(ked _		Date		~ .	
Circle one: Pres	sent Developed						- .	
1. Runoff curv	ve number (CN)							
Soil name and hydrologic group (Appendix A)	Cover description (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3		Area acres mi² %		Produ CN %	area
				·				
1/Use only one CN so	urce per line	Tota	als =					
CN (weighted) = tot 2. Runoff	al product/total area =;	Jse Cl	<i>i</i> 1 =					
Frequencyyr			Storm	n #1	Storm #2	Sto	rm #3	
Rainfall, P (24-hour)	in	}		, , , ,	•			
	in th table 2-1, fig. 2-1, or eqs.							

Worksheet 3: Time of concentration (T_c) or travel time (T_t)

Circle one: Present Developed	Project_			By	Date	
Circle one: T _c T _t NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments. Sheet flow (applicable to T _c only) Segment ID	Location		PART IN THE PART I	Checked	Date	
NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments. Sheet flow (applicable to T _c only) Segment ID Surface description (table 3-1)	Circle or	ne: Present	Developed			
Include a map, schematic, or description of flow segments.	Circle or	ne: T _c	T _t		<u> </u>	
Sheet flow (applicable to T _c only) 1. Surface description (table 3-1)	NOTES:	Space for as	s many as two segments per flo	ow type can be us	ed for each worksheet.	
Sheet flow (applicable to T _c only) 1. Surface description (table 3-1)		Include a ma	n, schematic, or description of flo	ow segments.		
1. Surface description (table 3-1)	Sheet flow		-		· · · · · · · · · · · · · · · · · · ·	
2. Manning's roughness coeff., n (table 3-1)	•	•	, -			
3. Flow length, L (total L \leq 300 ft)			•	·		
4. Two-yr 24-hr rainfall, P ₂		•	•			
5. Land slope, s						
6.	·		•			
Segment ID		-	•		= .	
7. Surface description. (paved or unpaved) 8. Flow length, L	-					
8. Flow length, L			•	· ·	·	
9. Watercourse slope, s					· · · · · · · · · · · · · · · · · · ·	
10. Average velocity V (figure 3-1)				 		
11. T _i = L/360V Compute T _e hr + =			•			
Channel flow Segment ID 2. Cross sectional flow area, a				+	=	
2. Cross sectional flow area, a		2.000				
3. Wetter perimeter, P _w	Channel flow		Segment ID			
4. Hydraulic radius, r = a/P _w Compute r	2. Cros	ss sectional flow area, a				
5. Channel slope, s	3. Wet	ter perimeter, P _w	ft	·		
6. Manning's roughness coeff., n	4. Hyd	raulic radius, $r = a/P_w$	Compute r ft			
7. V = 1.49 r ^{2/3} s ^{1/2} /n Compute Vft/s 3. Flow length, L	5. Char	nnel slope, s	fl/ft			
3. Flow length, Lft	6. Man	ning's roughness coeff.	, 11			
	V = 1	1.49 r ^{2/3} s ^{1/2} /n	Compute Vft/s			
9. T ₁ = L/3600V Compute T ₁ hr	8. Flow	length, L	ft			
	9. $T_i = J$	L/3600V	Compute T ₁ hr	+	=	
						

Worksheet 4: Graphical Peak Discharge method

Project	B	У	Date
Location	Check	ed	Date
Circle one: Present Developed			
1. Data:			÷.
Drainage area	mi ² (acres/640)		
Runoff curve number CN =	(From worksheet 2	<u>'</u>)	
Time of concentration $T_c =$	hr (From workshe	et 3) .	
Rainfall distribution type =	(I, II, III)		
Pond and swamp areas spread throughout watershed =	percent of A _m (acres or mi ² c	covered)
·	Storm #1	Storm #2	Storm #3
2. Frequency yr 3. Rainfall, P (24-hour) in			
4. Initial abstraction, I_a in (Use CN with table 4-1.)			
5. Compute I _a /P			
6. Unit peak discharge, q_u csm/in (Use T_c and I_a /P with exhibit 4)			
7. Runoff, Q in (From worksheet 2).			
8. Pond and swamp adjustment factor, F_p			
9. Peak discharge , q_p cfs (Where $q_p = q_u A_m Q F_p$)			

 I_a/P Date : ተተተተተተ From table 5-1 Initial abstraction Date_ La (iii) A_mQ (mi² - in) Checked. *↑*↑↑↑↑↑↑ From worksheet 2 Run-By. off O (E) curve number Runoff S Frequency (yr) 24 -hr Rainfall P (iii) Worksheet 5a: Basic watershed data summation to outlet Travel time Location. Downstream subarea names *↑↑↑↑↑↑* time through subarea Travel From worksheet 3 . T_t Developed Time of concen-tration $T_{\rm c} \ \, (hr)$ Present Drainage Am (mi²) area Circle one: Subarea name Project_

. Date Select and enter hydrograph times in hours form exhibit 5-Discharges at selected hydrograph times 3/ Checked Hydrograph discharge for selected times in A_mQ multiplied by tabular discharge from appropriate exhibit 5. -(cfs)-Fréquency (yr) Worksheet 5a. Rounded as needed for use with exhibit 5. Location Worksheet 5b: Tabular hydrograph discharge summary (mi²-in) Enter rainfall distribution type used. A,,Q Developed Basic watershed data used 11 I'V Composite hydrograph at outlet $\sum_{\substack{\text{to}\\ \text{(hr)}}} T_i$ Present Sub-area T_c (hr) Circle one: Subarea name \equiv 7 3/

Project_

Worksheet 6a: Detention basin storage, peak outflow discharge (q_o) known

Project		• • • • • • • • • • • • • • • • • • • •		Ву	,	Date	· · ·
Location				Checked	· · · · · · · · · · · · · · · · · · ·	Date	
Circle one:	Present Deve	loped				· · · ·	•
Tevation or stage				Detention basin storage 6. V _s /V _r			
Drainage an Rainfall dist Type (I, IA,	tribution	A _m =	2 nd stage	7. Runoff, Q(From worksheet 2)	·		
2. Frequency	yr			8. Runoff volume, V _r (V _r = QA _m 53.33)	ac-ft		
3. Peak inflow q _i (from workshed 4. Peak outflow	cfs et 4 or 5b) v discharge,		1/	 9. Storage volume, V_s	E _{max}		
5. Compute q _o / q _i							

1/ 2nd stage q_o includes 1st stage q_o

Appendix A – Exhibit II (8 of 8)

Worksheet 6b: Detention basin, peak outflow, storage volume (V_s) known

Project	By Date
. Location	Checked Date
Circle one: Present Developed	
Elevation or stage	
1. Data: Drainage area	Detention basin storage 6. Compute V _s /V _r 7. q _{.o} /q _i
2. Frequencyyr	8. Peak inflow discharge, q _i
3. Storage volume, V _s ac ft	q_o
4. Runoff, Q in (From worksheet 2)	10. Maximum stage, E_{max} (From plot)
5. Runoff volume, V_r ac ft $(V_r = QA_m 53.33)$	·

^{1/ 2}nd stage qo includes 1st stage qo

DETENTION BASIN STORAGE DESIGN

	DETENT	ION BASIN STORAGE DESIGN
I	Calculate the peak flow in cfs due to	the one (1) year frequency storm under <u>pre</u> developed conditions.
	$q_1 = A^*C^*i$ (allowable detention	n basin outflow release rate – stage one)
	Area, "A" = [] acres	5
	Runoff Coefficient, "C" = [1
	Intensity, "i" = a/(t _c + b) = [] in/hr
	Where: a = 8	30 (Table IV)
		b = 14 (Table IV)
		t_{c} = time of concentration (minutes) as determined from Appendix C – Exhibit 1
	q ₁ = A []* C [] * i [] = [] cfs
H	Calculation for the one (1) year freque	ency storm under <u>post</u> development conditions.
	$Q_1 = A^*C^*i$	
	Area, "A" = [] acres	
	Runoff Coefficient, "C" = [1
	Intensity, "i" = $a/(t_c+b) = [$] in/hr
	Where: a = 8	0
•		b = 14
		t _c = time of concentration (minutes)
	Q ₁ = A []* C [] * i [] = [] cfs
Ш	Critical Storm Calculation.	
	=	[] (See Table II on Page 34 for Critical r Frequency)

IV Calculate maximum storm duration, T_{ccr}, for the critical storm frequency (in minutes).

Critical Storm Frequency = [_____]

$$T_{ccr} = \frac{(A * C * a * b)}{(2 * q_1/3) - [(q_1^2 * t_c) / (6 * C * A * a)]} - b$$

Appendix A - Exhibit III (2 of 4)

Where: a = determined from Table IV (for critical storm frequency)

b = determined from Table IV (for critical storm frequency)

C = the one year postdeveloped weighted runoff coefficient

A = area in acres

T _{ccr} =	ľ	1	m	i	n	П	tes
ccr —	ı			и	11	ч	100

V Calculate l_{cr}:

IX

$$I_{cr} = [a / (T_{ccr} + b)] = [_____] in/hr$$

VI Calculate Q_{cr}, flow at maximum duration for the critical storm frequency:

$$Q_{cr} = A [___]^* C [___]^* I_{cr} [___] = [___] cfs$$

VII Calculate the required storage volume due to critical storm criteria, SV_{cr}:

$$SV_{cr} = [(60 * Q_{cr} * T_{ccr})] - \{ [2 * q_1 * (T_{ccr} + t_c) * 60] / 3 \}$$
$$+ [(q_1^2 * t_c * 60) / (6 * Q_{cr})]$$

$$SV_{cr} = [____] ft^3$$

VIII Calculate the peak flow in cfs due to the one-hundred (100) year frequency storm under <u>pre</u>developed conditions.

q₁₀₀ = A*C*i (allowable detention basin outflow release rate – stages one + two)

Intensity, "i" =
$$a/(t_c+b) = [$$
______] in/hr

 t_c = time of concentration (minutes) as determined from Appendix C – Exhibit 1, for <u>pre</u>developed

Calculate maximum storm duration T_{c100}, for the one-hundred year frequency (in minutes) storm under <u>post</u>developed conditions.

Appendix A - Exhibit III (3 of 4)

$$T_{ccr} = \frac{(A * C * a * b)}{(2 * q_{100}/3) - [(q_{100}^2 * t_c) / (6 * C * A * a)]} - b$$

Where:

a = 290

b = 31

C = the one-hundred year postdeveloped weighted runoff coefficient

A = area in acres

Tc₁₀₀=[_____] minutes

X Calculate I₁₀₀:

$$I_{100} = [a / (Tc_{100} + b)] = [_____] in/hr$$

XI Calculate Q₁₀₀, flow at maximum duration for the critical storm frequency:

$$Q_{100} = A[__] * C[__] * I_{100}[__] = [__] cfs$$

XII Calculate the required storage volume due to critical storm criteria, SV_{cr}:

$$SV_{100} = [(60 * Q_{100} * Tc_{100})] - \{ [2 * q_1 * (Tc_{100} + t_c) * 60] / 3 \}$$
$$+ [(q_{100}^2 * t_c * 60) / (6 * Q_{100})]$$
$$SV_{100} = [_____] ft^3$$

XIII Design Notes:

- 1. Design as a two stage outlet
 - a. An iterative process is required since the change in elevation head will cause an increase in the outflow of the stage one opening.
 - b. Two detention areas can be used to eliminate the iterative two stage outlet design process.
- 2. Emergency overflow must be accounted for via a spillway or other means.

General Notes:

- 1. The formulas used in calculations III through VII assume an orifice controlled outflow.
- 2. Reference pages 98 and 99, Water and Wastes Engineering, "Estimate Detention and Reservoir Storage". By A.S. Paital, P.E., Ph.D.

Appendix A – Exhibit IV

CRITICAL AREA PLANTING

1.TEMPORARY AND PERMANENT SEEDING

1.1 SEEDBED PREPARATION

A.Lime (in lieu of a soil test recommendation) on acid soil (ph = 5.5 or less) and subsoil at a rate of 100 pounds per 1000 sq. ft. or two (2) tons per acre of agricultural ground limestone.

B.Fertilizer (in lieu of soil test recommendation) shall be applied at a rate of 12-15 pounds (25 pounds for permanent seeding) per 1000 sq. ft. of 10-10-10 or 12-12-12 analysis or equivalent.

1.2SEEDING

A.Species Selection

(1) Temporary Seeding Mixture

Seeding Period	<u>Type</u>	<u>Rate</u> (1000 ft ²)
Spring and	1. Oats	3 lbs
Summer	2. Peren. Ryegrass	1 lbs
:	3. Tall Fescue	1 lbs
		•
Fall	1. Peren. Ryegrass	1 lbs
	2. Rye	3 lbs
	3. Wheat	3 lbs
	4. Tall Fescue	1 lbs

(2) Permanent Seeding Mixture

Seeding Period	<u>Type</u>	Rate (1000 ft ²)
Spring,	1. Creeping Red Fescue	0.5 lbs
Summer, and	Domestic Ryegrass	0.25 lbs
Fall	Kentucky Bluegrass	0.25 lbs
	2. Tall Fescue	1 lbs
	3. Dwarf Fescue	1 lbs

Spring, ·	1. Tall Fescue	1 lbs
Summer, and		
Fall	2. Crownvetch	0.25 lbs
·	Tall Fescue	0.50 lbs
	3. Flatpea	0.50 lbs
	Tall Fescue	0.50 lbs

(2-2) Seedings for Waterways and Road Ditches

Spring, 1. Tall Fescue 1 lbs
Summer, and
Fall

- B. Apply the seed uniformly with a cyclone seeder, drill, cultipacker seeder, or hydroseeder (slurry may include seed and fertilizer) preferably on a firm, moist seedbed. Seed wheat or rye no deeper than one (1) inch. Seed ryegrass no deeper than one quarter (1/4) of an inch.
- C. When feasible, except where a cultipacker type seeder is used, the seedbed should be firmed following seeding operations with a cultipacker, roller, or light drag. On sloping land seeding operations should be on the contour wherever possible.
- D. Other seed species may be substituted for these mixtures.
- E. These seeding rates need to be increased two to three times if they are to be used as a lawn.

2. DORMANT SEEDING

- A. Temporary Seeding After November 1, use mulch only.
- B. Permanent Seeding Seedings should not be planted from October 1 through November 20. The following methods may be used to make a "dormant seeding":
 - (1) From October 1 through November 20, prepare the seedbed, add the required amounts of lime and fertilizer, then mulch and anchor. After November 20, and before March 15, broadcast the selected seed mixture. Increase the seeding rates by 50 percent for this type of seeding.
 - (2) From November 20 through March 15, when soil conditions, permit, prepare the seedbed, lime and fertilize, apply the selected seed mixture, and

⁽³⁾ mulch and anchor. Increase the seeding rates by 50 percent for this type of seeding.

3. MULCHING

- A. Mulch shall consist of small grain straw (preferably wheat or rye) and shall be applied at the rate of two tons per acre or 100 pounds per 1000 sq. ft.
- B. Spread the mulch uniformly by hand or mechanically so the soil surface is covered.

C. Mulch Anchoring Methods

- (1) <u>Mechanical</u> Use a disk, crimper, or similar type tool set straight to punch or anchor the mulch material into the soil.
- (2) <u>Asphalt Emulsion</u> Apply at the rate of 160 gallons per acre into the mulch as it is being applied.
- (3) <u>Mulch Netting</u> Use according to the manufacturer's recommendations.

4. <u>IRRIGATION</u>

Supply new seedlings with adequate water for plant growth until they are firmly established.